教学目标 1.理解反比例的意义. 2.能根据反比例的意义,正确判断两种量是否成反比例. 3.培养学生的抽象概括能力和判断推理能力. 教学重点 引导学生理解反比例的意义. 教学难点 利用反比例的意义,正确判断两种量是否成反比例. 教学过程 一、复习准备(演示课件:成反比例的量) 1.下表中的两种量是不是成正比例?为什么? 购买练习的本数(本) 1 2 4 6 9 总价(元) 0.80 1.60 3.20 4.80 7.20 2.回忆:成正比例的量有什么特征? 二、新授教学 (一)引入新课 我们已经学习了常见数量关系中成正比例关系的量的特征.这节课我们继续研究常见的数量关系中的另外一种特征??成反比例的量. 教师板书:成反比例的量 (二)教学例4(演示课件:成反比例的量) 1.出示例4,提出观察思考要求: 从表中你发现了什么?这个表同复习的表相比,有什么不同? (1)表中的两种量是每小时加工的数量和所需的加工时间. 教师板书:每小时加工数和加工时间 (2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大. 教师追问:这是两种相关联的量吗?为什么? (3)每两个相对应的数的乘积都是600. 2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系? 教师板书:零件总数 每小时加工数×加工时间=零件总数 3.小结 通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的. (三)教学例5(演示课件:成反比例的量) 1.出示例5,根据题意,学生口述填表. 2.教师提问: (1)表中有哪两种量?是相关联的量吗? 教师板书:每本张数和装订本数 (2)装订的本数是怎样随着每本的张数变化的? (3)表中的两种量有什么变化规律? (四)比较例4和例5,概括反比例的意义. 1.请你比较例4和例5,它们有什么相同点? (1)都有两种相关联的量. (2)都是一种量变化,另一种量也随着变化. (3)都是两种量中相对应的两个数的积一定. 2.教师小结 像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系. 3.如果用字母 和 表示两种相关联的量,用 表示它们的积一定,反比例关系可以用一个什么样的式子表示? 教师板书: × = (一定) (五)教学例6(演示课件:成反比例的量) 1.出示例6,教师提问: (1)每天播种的公顷数和要用的天数是不是相关联的量? (2)每天播种的公顷数和要用的天数有什么关系?它们的积是什么?这个积一定吗? (3)播种总公顷数一定,每天播种公顷数和要用的天数成反比例吗?为什么? 2.思考:播种的总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例? 三、课堂小结 这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例.在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断. 四、课堂练习 (一)判断下面每题中的两个量是不是成反比例,并说明理由. 1.路程一定,速度和时间. 2.小明从家到学校,每分走的速度和所需时间. 3.平行四边形面积一定,底和高. 4.小林做10道数学题,已做的题和没有做的题. 5.小明拿一些钱买铅笔,单价和购买的数量. (二)你能举一个反比例的例子吗? 五、课后作业 判断下面每题中的两种量是不是成反比例,并说明理由. 1.煤的总量一定,每天的烧煤量和能够烧的天数. 2.种子的总量一定,每公顷的播种量和播种的公顷数. 3.李叔叔从家到工厂,骑自行车的速度和所需的时间. 4.华容做12道数学题,做完的题和没有做的题. 5.生产电视机的总台数一定,每天生产的台数和所用的天数. 6.长方形的面积一定,它的长和宽. 7.小林拿一些钱买练习本,单价和购买的数量. 六、板书设计 成反比例的量 例4.每小时加工数×加工时间=零件总数(一定) 例5.每本页数×装订本数=纸的总页数(一定) 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量.它们的关系叫做反比例关系. × = (一定) 例6.因为:每天播种的公顷数×天数=播种的总公顷数(一定) 所以:每天播种的公顷数和要用的天数成反比例. 成反比例的量
|